Objects in C++

Object

Example

Description

Symbol

Symbol("s")

a real variable s.

Index

Index("mu",Type::VD)

a Lorentz index mu with dimension D.

Index("mu",Type::CA)

a color index a with dimension NA.

Index("mu",Type::CF)

a color index i with dimension NF.

Vector

Vector("p")

a vector/momentum p.

Pair

Pair(mu,nu)

a Kronecker delta δμν\delta_{\mu\nu} with Index mu and nu.

Pair(p,mu)

a Vector p with Lorentz Index mu, pμp^\mu, p.mu.

Pair(p,q)

a scalar product pqp\cdot q between Vector p and q.

SUNT

SUNT(a,i,j)

a T-matrix element TijaT^a_{ij} for SU(N) group.

SUNT(lst{a,b,c},i,j)

a matrix element of a product of T, (TaTbTc)ij(T^aT^bT^c)_{ij}.

SUNF

SUNF(a,b,c)

a structure constant fabcf^{abc} of SU(N) group.

SUNF4

SUNF4(a,b,c,d)

a contract of two SUNF, fabefecdf^{abe} f^{ecd}.

Eps

Eps(mu1,mu2,mu3,mu4)

a Levi-Civita tensor εμ1μ2μ3μ4\varepsilon_{\mu_1\mu_2\mu_3\mu_4}.

Eps(p1,p2,mu1,mu2)

a partially contracted Levi-Civita tensor εp1p2μ1μ2\varepsilon_{p_1p_2\mu_1\mu_2}.

Eps(p1,p2,p3,p4)

a fully contracted Levi-Civita tensor εp1p2p3p4\varepsilon_{p_1p_2p_3p_4}.

DGamma

DGamma(mu,l)

a Dirac-γ\gamma matrix γμ\gamma_\mu for a fermion line l.

DGamma(p,l)

a Dirac slash p ⁣ ⁣ ⁣/=pμγνp\!\!\!/=p^\mu\gamma_\nu for a fermion line l.

DGamma(1/5/6/7,l)

a unit matrix, γ5\gamma_5, γ6\gamma_6, γ7\gamma_7 for a fermion line l.

SP

SP(mu.nu)

evaluated to δμν\delta_{\mu\nu}.

SP(p+s*q,mu)

evaluated to pμ+sqμp^\mu+sq^\mu.

SP(2*p+q,p+s*q)

evaluated to 2p2+(2s+1)pq+sq22p^2+(2s+1)p\cdot q+sq^2.

GAS

GAS(mu)

evaluated to γμ\gamma_\mu.

GAS(3*p+s*q)

evaluated to 3p ⁣ ⁣ ⁣/+sq ⁣ ⁣ ⁣/3p\!\!\!/+sq\!\!\!/.

GAS(1/5/6/7)

evaluated to a unit matrix, γ5\gamma_5, γ6\gamma_6, γ7\gamma_7, respectively.

LC

LC(p,mu,p+s*q,k)

evaluated to sεkphμs\varepsilon_{kph\mu}.

TR

TR(expr)

a wrapper for the Dirac trace of expression expr.

TTR

TTR(lst{a,b,c,d})

a wraaper for the SU(N) trace of TaTbTcTdT^aT^bT^cT^d.

form

form(expr)

evaluate the expression expr using FORM program.

Last updated